
How do JavaScript 
frameworks impact 

the security of applications
Ksenia Peguero



whoami

• Current: Sr. Research Engineer at Synopsys, 
part of the Security Research Lab

• Prior: Principle Consultant at Cigital/Synopsys

• PhD candidate at George Washington 
University

• Mother

• Ballroom dancer

• @KseniaDmitrieva



Why JavaScipt?
Language popularity by open pull 
request according the Octoverse
report from 2014 to 2019:

• JavaScript has been the leading 
programming language for the last 6 
years 

• JavaScript is used for web 
applications on client-side and 
server-side, in mobile applications, 
desktop applications and IoT 
software.

https://octoverse.github.com/



State of the Client-Side JavaScript Field Today



How many frameworks are there?

• Client-side: over 50 frameworks, according to the 
https://jsreport.io/
• Angular, React, Vue

• Server-side: over 40 frameworks, according to 
http://nodeframework.com/
• Express, Koa, Sails

• Full-stack frameworks
• Meteor, Aurelia, Derby, MEAN.js

• Desktop frameworks
• Electron

• Mobile frameworks
• Phonegap, Cordova



What is there in the framework for security?

• Frameworks provide functionality, easiness of prototyping and development, 
performance…
Hm,… security, anyone?

• Following the “shift-left” paradigm in software security, we should not only identify 
and fix  vulnerabilities earlier in the software development lifecycle, but also 
prevent them earlier.

• Questions:
• Does the security of a framework help to make applications more secure?
• Does building security controls into a framework result in “shifting-left” the security of the 

application?



Levels of Vulnerability Mitigation

A vulnerability may be mitigated at the following levels in 
relation to the framework:

• L0 - No mitigation in place. Baseline – no protection
• L1 - Custom function. A security control written by 

developers
• L2 - An external library that provides a security control
• L3 - A framework plugin. A third-party code used by 

developers which tightly integrates with the framework
• L4 - Built-in mitigation control implemented in the 

framework as a function or feature

proposed by John Steven

Developer code

Framework

3rd party library

function sanitize() {}

plugin

L1

L2

L3

L4



Mitigation Examples

• L1 - Custom function: developer 
implementation

• L2 - An external library:
ESAPI (The OWASP Enterprise Security API) -
a  security control library 
https://github.com/ESAPI/esapi-java-legacy

• L3 - A framework plugin:
the csurf plugin for Express
https://www.npmjs.com/package/csurf

• L4 - Built-in mitigation control:
Spring Security 
https://spring.io/projects/spring-security

function cors (res) {
res.set({

'Access-Control-Allow-Origin': '*’,
'Access-Control-Allow-Headers': 'Origin, X-Requested-With, 

Content-Type, Accept’
})
return res 

}

https://xkcd.com/221/



Hypothesis

 The closer the mitigation is located to the framework 
itself, the fewer vulnerabilities the code will have.

FrameworkDeveloper code



Case Study 1: XSS 
• XSS is “a type of injection, in which malicious scripts are injected into otherwise benign and 

trusted websites.” (OWASP)
• Common protections:

• Output encoding

• Input validation

• Sanitization

• Special case: need to allow users to use some HTML, but not malicious JavaScript, for example, 
blog posts, marketing letters, CMS.

• How to implement: display raw HTML and let the browser render it.

• How to protect from XSS: only allow a safe subset of HTML (sanitizing the “bad” HTML or using 
alternative markup languages like Markdown)



Data Selection for XSS (2016)
• Use case: the application needs to display user input that contains HTML markup

• Application Selection Criteria:
• Application type: blog or CMS

• Full-stack JavaScript applications

• Template engines: Jade/Pug, EJS, AngularJS

• Filters:
• last commit no later than 2013

• at least 1 star

• the language is JavaScript, HTML, CSS
https://insights.bookbub.com/creative-blog-post-ideas-authors/



Resulting Dataset

Total of 170 projects:

• 65 Jade/Pug  

• 54 EJS

• 51 AngularJS



Escaping and Interpolation in Frameworks

• Jade/Pug:
• Escaping: curly braces, equals sign for tags

• Interpolation: bang-sign, no sanitization

• EJS:
• Escaping: special braces '<%=' and '%>'

• Interpolation: '<%-' and '%>', no sanitization

• AngularJS:
• Escaping: contextually-aware escaping with double curly 

braces

• Interpolation: safe subset with 'ng-bind-html', 
trustAsHtml() for raw HTML interpolation

h1=title
p {article.name}
p!=article.content
div !{post.body}

<%=article.title%>
<%-article.body%>

<a href="{{post.url}}">
{{post.title}} </a>
<p ng-bind-html=
"post.description"></p>



Analysis Pipeline

Jade/Pug
Extended pug-lexer

and pug-parser

EJS
Extended EJS core

project, custom analyzer

AngularJS
ESLint with a custom rule

Download project 
info and template files 

from GitHub

Run parser and analyzer
for each template engine

Perform manual review Perform statistical
analysis of the results



Results

Mitigation Levels:

L1 - Custom function

L2 - An external library

L3 - A framework plugin

L4 - Built-in mitigation control

Template 
engine

Number of 
projects

Number of 
vulnerabilities

Number of 
vulnerable 
projects

% of 
vulnerable 
projects

Mitigation 
level

Jade/Pug 65 72 25 38% L1 or L2

EJS 54 96 23 43% L1 or L2

AngularJS 51 12 6 12% L4

Percentage of applications vulnerable to XSS



Confounding Variables Analysis for XSS
• What if AngularJS developers are just better / smarter / more experienced than developers writing 

Jade/Pug and EJS?

• We use ANOVA statistical analysis to verify our results against other factors

Criteria P-value

Developer’s overall experience 0.319279

Developer’s JavaScript experience 0.132049

Project size 0.431335

Project popularity (stars) 0.200649

Project reuse (forks) 0.211615

Template engine 0.001021

The statistically significant difference is shown by a p-value < 0.05. The choice of a template engine is 
the only factor affecting the number of vulnerabilities.

Hypothesis proved (for XSS): the closer the mitigation is located to the framework itself, the fewer 
vulnerabilities the code will have

value < 0.05



Case Study 2: CSRF 
CSRF - “an attack that forces an end user to execute unwanted actions on a web application in 
which they're currently authenticated” (OWASP)

Protection methods:
• Server-Side:

• CSRF tokens
 In POST parameters

 Double-submit cookie

• Two-factor authentication

• Not using session cookies:
• JWT

• Using web socket session

• Client-side:
– Same-site cookies

– White-listing 
expected origins

– Allowed referrer lists

https://linuxsecurityblog.com/2016/02/11/defending-against-csrf-attacks/



Data Selection for CSRF (2018)

Use case: authenticated users call sensitive functionality that change the server state

Application Selection Criteria:

• Application type:
• Blog

• CMS

• E-commerce

• REST API

• JavaScript server-side applications

• Frameworks: Express, Koa, Hapi, Sails, Meteor*

Selection goal:

• 100 applications per framework

http://leanport.com/effective-ways-to-improve-e-commerce-marketing/



Resulting Dataset

Total of 364 projects

Framework Blog CMS E-commerce REST API Total

Express 29 35 45 0 109

Koa 68 26 6 0 100

Hapi 26 3 9 10 48

Sails 72 20 15 0 107



CSRF Protection in Frameworks

Express:
• Plugins csurf L3
Koa:
• Plugin koa-csrf L3
Hapi:
• Plugin crumb L3
Sails:
• Framework configuration L4
Meteor:
• Framework architecture L?

const express = require('express');
const csrf = require('csurf');
const cookieParser = require('cookie-parser');
const app = express();

app.use(cookieParser());
app.use(csrf({cookie: true}));

Express

const Koa = require('koa');
const session = require('koa-session');
const CSRF = require('koa-csrf');
const app = new Koa();

app.use(session(app));
app.use(new CSRF());

Koa



CSRF Protection in Frameworks

Express:
• Plugins csurf L3
Koa:
• Plugin koa-csrf L3
Hapi:
• Plugin crumb L3
Sails:
• Framework configuration L4
Meteor:
• Framework architecture L?

const Hapi = require('hapi');
const Crumb = require('crumb');

const server = new Hapi.Server({port: 8000});
(async () => {

await server.register({
plugin: Crumb,
options: {restful: true}

});
...

Hapi

module.exports.csrf = {
csrf.grantTokenViaAjax: true,
csrf.origin: 'example.com'

}

Sails



Special Case: Meteor and JWT
A CSRF attack depends on a session being maintained in a cookie.           If there is no cookie, the attack is not possible.

Meteor:

• Meteor uses custom Distributed Data Protocol (DDP) for client-server communication

• DDP runs on WebSockets instead of HTTP

• A session is maintained via a long-lived WebSocket connection

• A third party cannot send a forged request over an established WebSocket connection

JSON Web Token (JWT):

• Developed as access tokens, but used as session tokens

• Not stored in cookies, but transmitted in HTTP headers, which are not added to cross-origin requests by the browser

• Have other limitations, but do protect from CSRF



Levels of Vulnerability Mitigation
A vulnerability may be mitigated at the following levels in 
relation to the framework:

• L0 - No mitigation in place. Baseline – no protection

• L1 - Custom function. A security control written by 
developers

• L2 - An external library that provides a security control
• L3 - A framework plugin. A third-party code used by 

developers which tightly integrates with the framework

• L4 - Built-in mitigation control implemented in the 
framework as a function or feature

• L5 – Architecture level mitigation control. A 
framework is designed in a way that makes the attack 
impossible.

Developer code

Framework

3rd party library

function sanitize() {}

plugin

L1

L2

L3

L4

Framework design/platformL5



Hypothesis

 The closer the mitigation is located to the framework 
itself, the fewer vulnerabilities the code will have.

Does it work for CSRF?

FrameworkDeveloper code



Analysis Pipeline

CSRF plugins:
csurf, csrf, alt-XSRF, 
koa-csrf, crumb, lusca

Sails configuration

JWT plugins

Download project  
from GitHub

Run ESLint with 
custom rules

Perform manual review Perform statistical
analysis of the results



Resulting Dataset
Framework Number of 

projects
CSRF 
protection

JWT Total 
protected

% of 
protected 
projects

Mitigation 
level

Express 109 6 9 15 14% L3

Koa 100 6 14 19* 19% L3

Hapi 48 0 17 17 35% L3

Sails 107 7 8 15 14% L4

Mitigation Levels:

L1 - Custom function

L2 - An external library

L3 - A framework plugin

L4 - Built-in mitigation control

Percentage of applications protected from CSRF



Confounding Variables Analysis for CSRF
Results of confounding variables analysis using ANOVA statistical tests

Criteria P-value

Developer’s overall experience 0.165714

Developer’s JavaScript experience 0.161450

Project size 0.263872

Project popularity (stars) 0.411852

Project reuse (forks) 0.513946

Framework 0.507734

The statistically significant difference is shown by a p-value < 0.05. However, none of the calculated 
p-values are smaller than 0.05. Thus, none of the confounding variables show a correlation.

For CSRF, the hypothesis is not proved. There is no correlation between the level of CSRF 
mitigation and the presence of the CSRF of vulnerability in the application, except for L5 (Meteor).



Comparing XSS and CSRF Results

• Compare %-age of protected projects by mitigation level/framework:

Why?

• L4 protection in AngularJS is enabled by default

• L4 protection in Sails is disabled by default

 Secure defaults are as important as the implementation levels of security controls



Conclusion

Recommendations to the framework developers and maintainers:

 Implementing security controls as third-party plugins does not ensure secure applications

 Other solutions:

 Processes: secure coding guidelines, training

 Secure SDLC: secure code review, linting rules on every build, static analysis, penetration testing

 Instead, build security controls into the framework

 Ensure that the default settings are secure and that the security control is enabled

 When plausible, design a framework in a way that eliminates the possibility of the vulnerability at 
the architecture level



Ksenia Peguero
ksenia@synopsys.com
Twitter: @KseniaDmitrieva
https://www.synopsys.com/software


