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• Founder and CTO of Denim Group

• Software developer by background

• OWASP San Antonio co-leader

• 20 years experience in software 

architecture, development, and security
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Building a world where technology is trusted

How we can help:

Denim Group is solely focused on helping build resilient 
software that will withstand attacks.

• Since 2001, helping secure software

• Development background

• Tools + services model



Agenda

• The Good Old Days

• The More Interesting New Days

• Architectural Bill of Materials

• Four Cs

• Reporting

• Tailoring

• Questions
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The Good 
Old Days

Blast it with SAST or DAST
Do some manual testing, and …





The More Interesting New Days
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The Even More Interesting New Days
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A Dedicated Server at Rackspace?!
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What Changed?
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An Aside: Why Did Things Change?

• Digital Transformation

• The “risk” we talk about is crap

• Falling behind creates existential risk for firms

• Must Go Faster?

• Change culture to DevOps

• Culture has changed to DevOps?

• Adopt new technologies to support mission

11https://www.denimgroup.com/resources/whitepaper/security-the-other-side-of-digital-transformation/
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What Changed?

• Architecture

• Monolithic -> Microservices

• Technology

• Cloud servers

• Cloud services

• Containers

• Serverless

• CI/CD Pipelines
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Microservices

If you couldn’t make one big thing work properly, what makes 
you think you can make thirty smaller things that need to talk to 
one another work properly?
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How You Think Microservices Will Work
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How Microservices 
Actually Work
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As, Bs, and Four Cs

• Architectural Bill of Materials

• Four Cs

• Code

• Components

• Compute

• Cloud Configuration
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Software Bill of Materials (SBOM)

• What is actually in 
the software I am 
shipping?

• Open source, etc
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OWASP Dependency Track

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project


Architectural Bill of Materials
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Architectural Bill of Materials
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• What are the pieces of the system we are looking at?

• Being able to answer:

• What are the various parts of the system?

• What do they consist of?

• What do they do?

• Where are they hosted?



Architectural Bill of Materials
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• So a threat model?

• Yeah pretty much. A threat model.



High Level Threat Modeling Concepts

Decide on 
scope

1

Build your 
dataflow 
diagrams

2

Enumerate 
threats

3

Decide on 
mitigations
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Creating Data 
Flow Diagrams 

(DFDs)

• Decompose the 
system into a 
series of 
processes and 
data flows

• Explicitly identify 
trust boundaries



Example Data Flow Diagram



Identifying Threats from the Data Flow

STRIDE is expansion of 
the common CIA threat 
types

• Confidentiality

• Integrity

• Availability 

STRIDE

• Spoofing Identity

• Tampering with Data

• Repudiation

• Information 
Disclosure

• Denial of Service

• Elevation of Privilege



Mapping Threats to Asset Types

Threat Type External

Interactor

Process Data Flow Data Store

S – Spoofing Yes Yes

T – Tampering Yes Yes Yes

R – Repudiation Yes Yes Yes

I – Information Disclosure Yes Yes Yes

D – Denial of Service Yes Yes Yes

E – Elevation of Privilege Yes



So What Does That Leave Us?

Take all the assets

Associate threat types with each asset

Voila! List of things we need to worry about



ABOM

• We at least need the results of Steps 1 and 2 to get our asset list and the 
relationships

• May as well finish things off because we’ll need the rest later on to provide 
context for reporting
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Given our ABOM

• We now need to look at the security of each of the pieces in 
the overall system

• Test them for security issues at various layers

• Aggregate the results
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Four Cs
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Code

Components

Compute

Cloud Configuration



Code
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Code

• This is the code you write

• Business logic

• Glue stuff together

• Traditional focus of OWASP/application security

• Automated testing with SAST, DAST, IAST

• Manual penetration testing and code review
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Code – API Testing

• Great news – the DAST tools you depended on for web application testing 
might not work terribly well for APIs

• Some API-focused DAST tools

• OWASP ZAP has some capabilities in this area

• Always option to do manual testing
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Components
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Components

• These are the open source components you include so that you don’t have to write everything

• Libraries

• Frameworks

• Gained prominence with its introduction in the OWASP Top 10 2013

• Gained notoriety with the Equifax breach

• Thanks, Struts…

• Test with Software Composition Analysis (SCA)

• Often need to manually validate impact

• Traditional SBOM scope

34https://www.owasp.org/index.php/OWASP_Dependency_Check
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Compute
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Compute

• Something has to run all this code…

• Virtual machines, cloud servers, containers

• Serverless takes this to the extreme

• Don’t forget dedicated servers

• Test with:

• Traditional vulnerability scanning

• Container scanning
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Cloud Configuration
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Cloud Configuration

• The squishiest of all the Cs

• Maybe that’s why it gets two Cs…

• Largely configuration checks

• Open S3 buckets

• Bad IAM set ups

• Will evolve over time

• If this presentation were being given a couple of years ago, cloud servers might fall in this category

• Move stable stuff – cloud servers – into their own Category
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So What Does This All Look Like?
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Reporting

• Know your audience(s)

• Who are you consumers?

• Security/risk management

• Individual service owners/developers

• Start with your ABOM to provide context
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Security/Risk Management

• Risk = Impact x Likelihood

• Likelihood is important in these complicated systems

• DREAD

• CVSS vX – Base + Environmental Metrics

• Will often require a narrative

• ”If A, then B, then C…”

• Base concerns for exposure

• Compliance 

• Service Level Agreements (SLAs)
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Service Owner/Developer

• Why should/must I care?

• How do I fix this?
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Tailoring to Your Requirements

• Nobody has the resources to do everything they want

• If everything is important then nothing is important

• What services deal with the most critical data?

• What components of the system expose the most risk?

• Are you more concerned that a container might have a blank root password or that 
your login routine might have Cross-Site Scripting (XSS) exposed?
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Prioritized Testing
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• Dynamic testing of public-facing sites and services

• That’s what most bad guys will see

• Cloud configuration checks to identify potential unknown attack surface

• Open S3 buckets, etc

• Prioritize additional activities based on resources



Tailoring to Your Requirements
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Decisions You Might Make

• What’s the attack surface?

• Definitely known:

• Web front end

• Chat server

• Hosted MongoDB

• Need to determine additional exposure:

• Scan exposed network assets

• Check cloud configuration
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Test Plan

• Enumerate assets to establish ABOM

• Cloud configuration check

• Identify S3 buckets, gross IAM sins

• Network scan of exposed (and owned) IPs

• DAST scan of Web Front End

• Maybe some manual penetration testing

• DAST/API scan of Chat Server

• Again maybe some manual penetration testing
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Questions?

Dan Cornell

@danielcornell

dan@denimgroup.com
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https://twitter.com/danielcornell

