
The As, Bs, and Four 
Cs of Testing Cloud-
Native Applications

Dan Cornell

March 5, 2020



Dan Cornell

• Founder and CTO of Denim Group

• Software developer by background

• OWASP San Antonio co-leader

• 20 years experience in software 

architecture, development, and security



3

Advisory 
Services

Assessment 
Services

Remediation 
Services

Vulnerability Resolution 

Platform

Building a world where technology is trusted

How we can help:

Denim Group is solely focused on helping build resilient 
software that will withstand attacks.

• Since 2001, helping secure software

• Development background

• Tools + services model



Agenda

• The Good Old Days

• The More Interesting New Days

• Architectural Bill of Materials

• Four Cs

• Reporting

• Tailoring

• Questions

4



The Good 
Old Days

Blast it with SAST or DAST
Do some manual testing, and …





The More Interesting New Days

7



The Even More Interesting New Days

8



A Dedicated Server at Rackspace?!

9



What Changed?

10



An Aside: Why Did Things Change?

• Digital Transformation

• The “risk” we talk about is crap

• Falling behind creates existential risk for firms

• Must Go Faster?

• Change culture to DevOps

• Culture has changed to DevOps?

• Adopt new technologies to support mission

11https://www.denimgroup.com/resources/whitepaper/security-the-other-side-of-digital-transformation/

https://www.denimgroup.com/resources/whitepaper/security-the-other-side-of-digital-transformation/


What Changed?

• Architecture

• Monolithic -> Microservices

• Technology

• Cloud servers

• Cloud services

• Containers

• Serverless

• CI/CD Pipelines

12



Microservices

If you couldn’t make one big thing work properly, what makes 
you think you can make thirty smaller things that need to talk to 
one another work properly?

13



How You Think Microservices Will Work

14



How Microservices 
Actually Work

15



As, Bs, and Four Cs

• Architectural Bill of Materials

• Four Cs

• Code

• Components

• Compute

• Cloud Configuration

16



Software Bill of Materials (SBOM)

• What is actually in 
the software I am 
shipping?

• Open source, etc

17

OWASP Dependency Track

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project

https://www.owasp.org/index.php/OWASP_Dependency_Track_Project


Architectural Bill of Materials

18



Architectural Bill of Materials

19

• What are the pieces of the system we are looking at?

• Being able to answer:

• What are the various parts of the system?

• What do they consist of?

• What do they do?

• Where are they hosted?



Architectural Bill of Materials

20

• So a threat model?

• Yeah pretty much. A threat model.



High Level Threat Modeling Concepts

Decide on 
scope

1

Build your 
dataflow 
diagrams

2

Enumerate 
threats

3

Decide on 
mitigations

4



Creating Data 
Flow Diagrams 

(DFDs)

• Decompose the 
system into a 
series of 
processes and 
data flows

• Explicitly identify 
trust boundaries



Example Data Flow Diagram



Identifying Threats from the Data Flow

STRIDE is expansion of 
the common CIA threat 
types

• Confidentiality

• Integrity

• Availability 

STRIDE

• Spoofing Identity

• Tampering with Data

• Repudiation

• Information 
Disclosure

• Denial of Service

• Elevation of Privilege



Mapping Threats to Asset Types

Threat Type External

Interactor

Process Data Flow Data Store

S – Spoofing Yes Yes

T – Tampering Yes Yes Yes

R – Repudiation Yes Yes Yes

I – Information Disclosure Yes Yes Yes

D – Denial of Service Yes Yes Yes

E – Elevation of Privilege Yes



So What Does That Leave Us?

Take all the assets

Associate threat types with each asset

Voila! List of things we need to worry about



ABOM

• We at least need the results of Steps 1 and 2 to get our asset list and the 
relationships

• May as well finish things off because we’ll need the rest later on to provide 
context for reporting

27



Given our ABOM

• We now need to look at the security of each of the pieces in 
the overall system

• Test them for security issues at various layers

• Aggregate the results

28



Four Cs

29

Code

Components

Compute

Cloud Configuration



Code

30



Code

• This is the code you write

• Business logic

• Glue stuff together

• Traditional focus of OWASP/application security

• Automated testing with SAST, DAST, IAST

• Manual penetration testing and code review

31



Code – API Testing

• Great news – the DAST tools you depended on for web application testing 
might not work terribly well for APIs

• Some API-focused DAST tools

• OWASP ZAP has some capabilities in this area

• Always option to do manual testing

32



Components

33



Components

• These are the open source components you include so that you don’t have to write everything

• Libraries

• Frameworks

• Gained prominence with its introduction in the OWASP Top 10 2013

• Gained notoriety with the Equifax breach

• Thanks, Struts…

• Test with Software Composition Analysis (SCA)

• Often need to manually validate impact

• Traditional SBOM scope

34https://www.owasp.org/index.php/OWASP_Dependency_Check

https://www.owasp.org/index.php/OWASP_Dependency_Check


Compute

35



Compute

• Something has to run all this code…

• Virtual machines, cloud servers, containers

• Serverless takes this to the extreme

• Don’t forget dedicated servers

• Test with:

• Traditional vulnerability scanning

• Container scanning

36



Cloud Configuration

37



Cloud Configuration

• The squishiest of all the Cs

• Maybe that’s why it gets two Cs…

• Largely configuration checks

• Open S3 buckets

• Bad IAM set ups

• Will evolve over time

• If this presentation were being given a couple of years ago, cloud servers might fall in this category

• Move stable stuff – cloud servers – into their own Category

38



So What Does This All Look Like?

39



Reporting

• Know your audience(s)

• Who are you consumers?

• Security/risk management

• Individual service owners/developers

• Start with your ABOM to provide context

40



Security/Risk Management

• Risk = Impact x Likelihood

• Likelihood is important in these complicated systems

• DREAD

• CVSS vX – Base + Environmental Metrics

• Will often require a narrative

• ”If A, then B, then C…”

• Base concerns for exposure

• Compliance 

• Service Level Agreements (SLAs)

41



Service Owner/Developer

• Why should/must I care?

• How do I fix this?

42



Tailoring to Your Requirements

• Nobody has the resources to do everything they want

• If everything is important then nothing is important

• What services deal with the most critical data?

• What components of the system expose the most risk?

• Are you more concerned that a container might have a blank root password or that 
your login routine might have Cross-Site Scripting (XSS) exposed?

43



Prioritized Testing

44

• Dynamic testing of public-facing sites and services

• That’s what most bad guys will see

• Cloud configuration checks to identify potential unknown attack surface

• Open S3 buckets, etc

• Prioritize additional activities based on resources



Tailoring to Your Requirements

45



Decisions You Might Make

• What’s the attack surface?

• Definitely known:

• Web front end

• Chat server

• Hosted MongoDB

• Need to determine additional exposure:

• Scan exposed network assets

• Check cloud configuration

46



Test Plan

• Enumerate assets to establish ABOM

• Cloud configuration check

• Identify S3 buckets, gross IAM sins

• Network scan of exposed (and owned) IPs

• DAST scan of Web Front End

• Maybe some manual penetration testing

• DAST/API scan of Chat Server

• Again maybe some manual penetration testing

47



Questions?

Dan Cornell

@danielcornell

dan@denimgroup.com

48

https://twitter.com/danielcornell

