
Injecting	Security	Controls	

	in	Software	Applications

Katy	Anton	
@KatyAnton	

March	14,	2019

About	me	

• Software	development	background		

• Principal	Application	Security	Consultant	-		Veracode		

• OWASP	Bristol	Chapter	Leader		

• Project	co-leader	for	OWASP	Top	10	Proactive	Controls																																																																																																		

(@OWASPControls)	

Injection

CWEs	in	Injection	Category	

CWE-93:		CRLF	Injection	

CWE-74	
Injection

CWE-943:	Improper	Neutr.	of	Special	El	in	Query

CWE-94:		Code	Injection

CWE-91:		XML	Injection

CWE-78:		XSS

CWE-77:		Commmand	Injection

CWE-89:	SQL	Injection

CWE-90:	LDAP	Injection

Source:	NVD	

CWE-78:	OS	Cmd	Inj

CWE-78:	Argument	Inj

Decompose	the	Injection

Get / Post Data

File Uploads

HTTP Headers

Database Data

Config files

SQL

HTML

XML

Bash Script

LDAP Query

SQL Parser

HTML Parser

XML Parser

Shell

LDAP Parser

Input Output Parser

Data	interpreted	as	Code

Extract	Security	Controls

Input Output Parser

Vulnerability Encode Output Parameterize Validate Input
SQL Injection R R
XSS R R
XML Injection
(XPATH Injection) R R

OS Cmd Injection R R R
LDAP Injection R R

Primary Controls Defence in depth

Sensitive	Date	Exposure

Data	at	Rest	and	in	Transit

Vulnerabilities	

Data Types Encryption Hashing

Data	at	Rest:		

Requires	the	initial	value	
E.q:	credit	card

R

Data	at	Rest:		

Doesn’t	require	the	initial	value	
E.q:	user	passwords

R

Data	in	Transit R

How	Not	to	Do	it	!

Data	at	Rest:	Vulnerabilities

encryption_key = PBKF2(password, salt, iterations, key_length);

In the same folder - 2 file:

The content of password.txt:

Security	Controls:	Encryption	

Cryptographic	Storage	

Strong	Encryption	Algorithm	:		

• AES		

Key	Management		

• Store	unencrypted	keys	away	from	the	encrypted	data.	

• Protect	keys	in	a	Key	Vault	(Hashicorp	Vault		/	Amazon	KMS)	

• Keep	away	from	home	grown	key	management	solutions.	

• Define	a	key	lifecycle.	

• Build	support	for	changing	algorithms	and	keys	when	needed	

• Document	procedures	for	managing	keys	through	the	lifecycle	

							Source:	https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet	

https://www.vaultproject.io/
https://aws.amazon.com/kms/
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

Security	Controls:	Password	Storage	

Use	a	Strong	Algorithm:	

•PBKDF2		

•bcrypt		

• scrypt	

•Argon2i	

• Java	

•PHP	-	password_hash()	supports	Argon2i	from	version	7.2	

							Source:	https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet	

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Security	Controls:	Data	in	Transit

TLS		Everywhere!

•Client	—>	Application	server

•Server—>	Non-browser	components

Intrusion	Detection

“If	a	pen	tester	is	able	to	get	into	a	system	without	being	detected,	
then	there	is	insufficient	logging	and	monitoring	in	place.“

Security	Controls	

Security	Logging:	

The	security	control	that	developers	can	use	to	log	security	

information	during	the	runtime	operation	of	an	application.	

The	6	Best	Detection	Point	Types

Good	attack	identifiers:	

1. Authorisation	failures	

2. Authentication	failures	

3. Client-side	input	validation	bypass	

4. Whitelist	input	validation	failures	

5. Obvious	code	injection	attack	

6. High	rate	of	function	use	

Source:	https://www.owasp.org/index.php/AppSensor_DetectionPoints	

https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/AppSensor_DetectionPoints

Intrusion	Detection	Points	Examples

Request	Exceptions	

• Application	receives	GET	when	expecting	POST	

• Additional	form	or	URL	parameters	submitted	with	request

Authentication	Exceptions	

• The	user	submits	a	POST	request	which	only	contains	the	username	variable.	The	

password	variable	has	been	removed.	

• Additional	variables	received	during	an	authentication	request	(like	‘admin=true’')

Input	Exceptions	

• Input	validation	failure	on	server	despite	client	side	validation	

• Input	validation	failure	on	server	side	on	non-user	editable	parameters	(hidden	

fields,	checkboxes,	radio	buttons,	etc)

Source: https://www.owasp.org/index.php/AppSensor_DetectionPoints

https://www.owasp.org/index.php/AppSensor_DetectionPoints
https://www.owasp.org/index.php/AppSensor_DetectionPoints

Vulnerable	Components	

Using	Software	Components	with	Known	Vulnerabilities		

Root	Cause

•Difficult	to	understand	
•Easy	to	break		
•Difficult	to	test			
•Difficult	to	upgrade		
• Increase	technical	debt

Components	Examples

Example	of	external	components:	

• Open	source	libraries	-	for	example:	a	logging	library	

• APIs	-	for	example:	vendor	APIs	

• Libraries	/	packages	by	another	team	within	same	company

Example	1:	Implement	Logging	Library

• Third-party	-	provides	logging	levels:		
• FATAL,	ERROR,	WARN,	INFO,	DEBUG.	

• We	need	only:	

• DEBUG,	WARN,	INFO.

Simple	Wrapper

Helps	to:	

•Expose	only	the	functionality	required.	
•Hide	unwanted	behaviour.	

•Reduce	the	attack	surface	area.	
•Update	or	replace	libraries.	
•Reduce	the	technical	debt.

Example	2:	Implement	a	payment	gateway

Scenario:	

• Vendor	APIs		-	like	payment	gateways	

• Can	have	more	than	payment	gateway	one	in	application		

• Require	to	be	inter-changed	

Adapter	Design	Pattern	

• Converts	from	provided	interface	to	the	required	

interface.	

• A	single	Adapter	interface	can	work	with	many	

Adaptees.	

• Easy	to	maintain.

Your Code

Third-party code

 Adapter

Example	3:	Implement	a	Single	Sign-On

• Libraries	/	packages	created	by	another	team	in	the	company	

• Re-used	by	multiple	applications		

• Common	practice	in	large	companies

Façade	Design	Pattern

•Simplifies	the	interaction	

with	a	complex	sub-system	

•Make	easier	to	use	a	poorly	

designed	API		

• It	can	hide	away	the	details	

from	the	client.	

•Reduces	dependencies	on	
the	outside	code.

Secure	Software	Starts	from	Design	!

Wrapper
To expose only required
functionality and hide unwanted
behaviour.

Façade Pattern
To simplify the interaction with
a complex sub-system.

Adapter Pattern
To convert from the required
interface to provided interface

Your Code

Third-party code

 Adapter

How	often?	

Rick	Rescorla

• United	States	Army	office	of	British	origin		

• Born	in	Hayle,	Cornwall	

• Director	of	Security	for	Morgan	Stanley	in	

WTC

Security	Controls	Recap	

Security	Controls	Recap

Application Server

Operating System

Software Application Param

Data

Param

Queries

Key
 Management

Secure

Date

Encode
output

TLS

Validate
Input

TLS

TLS

Log

Exceptions

Encode output

Mod

Mod

Encaps

Mod

Mod

Mod

Library

Mod

Mod

Final	Takeaways	

Final	Takeaways	

CWEs
Focus on
Security
Controls

which prevent

Final	Takeaways	

Verify	Regularly CWEs
Focus on
Security
Controls

Thank	you	very	much

@KatyAnton

